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Abstract 

As part of an ongoing effort to better understand student problem-solving processes to open-
ended problems, we have coded 14 mechanical engineering projects (representing about 60 
journals) according to abstraction level, design activity, planning, and reporting.  We also 
developed quantitative outcome measures that are reported in a separate submission to this 
conference.  We then developed a computer model of the journal data that correlates 12 key 
process variables to design outcomes, and conducted a computer design of experiments to extract 
the effects that the process variables have on the response variables (i.e., project outcomes).  In 
this paper we report the results of this modeling effort and discuss their implications for the 
general model of engineering problem-solving presented in various forms in many engineering 
textbooks.  Our results suggest modifications to the engineering problem-solving model to make 
it more suitable for engineering students. 

1. Introduction 

Solving open-ended problems is arguably the cornerstone of the engineering endeavor.  
Employers look for engineers who are effective at solving open-ended problems.  Engineering 
accreditation demands evidence that students can tackle open-ended problems proficiently.  
Much faculty effort is devoted to improving student skills in this area.  The basic process model 
used for these kinds of problems starts with identification of need, then goes through information 
gathering, idea generation, evaluation and selection steps—in other words, a basic design process 
model.  Our three-year study of student design processes suggests that the general model for 
engineering problem-solving may require some tweaking to make it a more effective model for 
engineering students. 

Over the decades, numerous models have been proposed to describe “the engineering design 
process.”  However, few of these have been empirically validated or experimentally verified.  
Most have been developed through personal experience and accumulation of anecdotes.  
Furthermore, few models explicitly consider student processes relative to project outcomes.  Our 
work attempts to further our understanding of problem-solving processes by gathering data from 
actual projects (one in which the participants have real stakes) in large enough sample sizes to 
enable statistical modeling that directly links design process to outcome.   

In this study, we analyzed data collected from 14 student mechanical engineering design projects, 
relating design process variables to project outcomes using statistical techniques.  Our aim was to 
better understand what process characteristics tend to be associated with good design outcomes.  
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Specifically, we characterized the relationship between 12 design process variables (resources 
spent on problem definition, idea generation, engineering analysis and design refinement 
activities at the concept, system or detail design levels) and project outcomes as measured by 
client satisfaction and design quality.  The key research questions addressed are: What process 
variables are significantly associated with positive or negative project outcomes, and what is the 
magnitude of their effects? 

The next section provides a brief discussion of alternative methods used to study and characterize 
design processes and their applicability in addressing our research objectives. Then we describe 
our data collection and modeling methods, followed by results, discussion, and conclusions. 

2. Motivation  

A design process may be defined as the series of activities that take a design problem from an 
initial specification to a finished artifact that meets all the requirements of the specification.1  In 
general, a design process can be characterized by a sequence of fundamental operations called 
tasks. Many authors use flowchart representations that shows discrete tasks (or task outputs) 
connected by transition arcs. Individual elements within the models identify tasks, procedures, or 
results important to the completion of the design. The overall structure of the representation 
provides a qualitative definition of the design process.  

Design models differ widely across authors, particularly as tasks are specified in greater detail.2  
But the models consistently identify similar types of activities, e.g., problem identification and 
definition, ideation, evaluation, and iteration.  Furthermore, most models recognize that design 
projects transition through phases, or alternatively, that designers operate at different levels of 
scope or abstraction over the course of a design project.  Again, the phases or levels can differ or 
have different names, but most models start with an early conceptual phase, conclude with a 
detail design phase, and connect them with one or more intermediate phases. Figure 1 displays a 
typical process, adapted from Dym and Little.3   

In our review of design texts, we were unable to identify any models that had been empirically 
validated or that had explicitly correlated design process to outcome.  Most authors seemed to be 
either expert designers writing from their work experience, or academics writing from their 
teaching experience.  Our intention, then, was to devise a study to explicitly relate process to 
outcome and empirically validate a general design process model derived from the literature.  We 
hoped to gain insight into how engineering educators can better prepare their students for 
professional design responsibilities.  The next section presents our approach. 
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FIGURE 1: A TYPICAL DESIGN PROCESS MODEL 
(ADAPTED FROM DYM AND LITTLE3) 

3. Research Methodology 

This study focused on the capstone mechanical engineering design projects completed between 
Spring 2001 and Fall 2002 semesters at Montana State University. ME 404, the mechanical 
engineering capstone design class, is a 4-credit one-semester course. Students are divided into 
teams of 2 - 4 with a faculty member as advisor. The projects are industry sponsored so each 
team must interact with their client/sponsor to define the needs, devise a solution to meet those 
needs, and deliver a product (i.e., a set of engineering drawings and specifications, written report, 
oral report, and in many cases a hardware prototype) by semester’s end. 

3a. Data Collection: Process Variables 

Researchers have used a number of techniques to collect and study data on design processes, 
including interviews,1 retrospective and depositional methods,4 protocol analysis,5 and process 
observation.6 However, for this study, we chose design journals kept by individual students as the 
medium by which to collect data on actual student processes. This data collection technique 
overcomes many of the drawbacks of other research methods.  Unlike interviews, retrospective, 
and depositional methods, data are collected in real-time rather than retrospectively. But unlike 
observational approaches, the journal method does not require specially trained professionals. 
Like protocol analysis, the data can be readily quantified using a suitable coding scheme, but it 
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requires little researcher intervention during data collection and therefore is a potentially more 
accurate representation of the actual design process.  It is also more feasible to collect a relatively 
large sample size compared to videotaping or other approaches because the quantity of data 
captured, while still large, is more manageable.  

Students were asked to keep individual design journals (notebooks) to document their work over 
the semester as a part of this project.7 Journals were periodically evaluated using a rubric to help 
encourage good record keeping, and students were given specific feedback on the expectations 
and quality of their journals. These journals constituted 15 % of the final course grade. At project 
completion, journals were collected and coded according to the scheme in Table 1, with times 
assigned according to the start / end times recorded. 

TABLE 1: CODING MATRIX 

Design Activities 
 Concept (C) System (S) Detail (D) 
Problem Definition (PD) C/PD S/PD D/PD 
Idea Generation (IG) C/IG S/IG D/IG 
Engineering Analysis (EA) C/EA S/EA D/EA 
Design Refinement (DR) C/DR S/DR D/DR 
 
Non-Design Activities 
Project Management PM  
Report Writing RW  
Presentation Preparation PP  

 

Each design-related activity received two codes.  The first is level of abstraction where we 
identify three levels.  Concept design (C) addresses a problem or sub-problem with preliminary 
ideas, strategies, and/or approaches.  Common concept design activities are identifying customer 
needs, establishing the design specifications, and generating and selecting concepts. System level 
design (S) defines the needed subsystems, their configuration and their interfaces. Detail design 
(D) activities focus on quantifying specific features required to realize a particular concept, for 
example defining part geometry, choosing materials, or assigning tolerances. 

The coding scheme also delineates four categories of design activity. Problem definition (PD) 
implies gathering and synthesizing information to better understand a problem or design idea 
through activities such as: stating a problem, identifying deliverables, and researching existing 
technologies. Activities in idea generation (IG) are ones in which teams explore qualitatively 
different approaches to recognized problems, such as brainstorming activities, listing of 
alternatives, and recording “breakthrough” ideas. Engineering analysis (EA) involves formal and 
informal evaluation of existing design/idea(s), e.g., mathematical modeling and decision 
matrices. Finally, design refinement (DR) activities include modifying or adding detail to 
existing designs or ideas, deciding parameter values, drawing completed sketches of a design, 
and creating engineering drawings using computer-aided design software. 

The coding scheme also designates codes for non-design activities associated with project 
management and project delivery so that every entry could be assigned a code.  Project 
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management (PM) covers project planning and progress evaluation, including: scheduling, class 
meetings to discuss logistics and deadlines, identifying tasks, and reporting project status. The 
delivery category is for activities associated with interim and final report writing (RW) and final 
presentation preparation (PP). Even though these activities (PM, RW, and PP combined) 
constitute approximately 50 % of the total project time, a separate analysis found no statistically 
significant association between time spent on PM, PP, and RW activities and the design 
outcomes (client satisfaction and design quality, explained below).  Thus, this study focuses only 
on the design activities described in the previous two paragraphs. 

The process of journal coding proceeded in two stages. First, research assistants familiarized 
themselves with the projects by reading the final written reports, then coded data and captured 
times by walking through team members’ journals in lock step, considering all the members’ 
entries for a given day before moving to the next day. Simple rules were devised for allocating 
time, and resolving discrepancies among the different journal accounts.  The principal 
investigator then reviewed the coding as a crosscheck on accuracy and consistency. The 
disagreements were solved through discussion and the process continued until mutual agreement 
was reached. The time data on the various process variables was then aggregated for the project 
by combining individual journal data. To date, we have coded 14 design projects (approx. 60 
journals). The time data on the 12 design variables (3 abstraction levels across 4 activity 
categories) on each of these projects served as the process/input data for the model constructed in 
this study (see Sobek7 for more details).  

3b. Data Collection: Outcomes Data 

It seems fair to define a “good” design process as one that leads to a good outcome. Thus to 
determine the goodness of a design process we need a way to measure the goodness of the end 
product. For this study we developed two outcomes measures, client satisfaction and the quality 
of the final designed product. Consequently, two separate instruments, the Client Satisfaction 
Questionnaire (CSQ) and the Design Quality Rubric (DQR), were developed, validated and 
deployed for measuring the client satisfaction and the design quality index quantitatively.  

The CSQ was developed by the authors based in part on previously developed surveys (for 
details on the questionnaire development, see the companion paper by Sobek and Jain8).  The 
final questionnaire was composed of 20 questions, of which six were used for the client 
satisfaction index of outcomes quality, as shown in Table 2.  A five-point Likert scale is used for 
recording the responses. 
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TABLE 2: CLIENT SATISFACTION METRICS 

Metric No. of 
Measures  Measures Cronbach’s � 

Quality 2 

The percentage of the design objectives the client 
thought the team achieved 

The closeness of the final outcome to client’s initial 
expectations. 

0.78 

Overall 4 

Design’s feasibility in its application and fabrication 

Client’s opinion on implementing the design 

Client’s opinion on students’ knowledge of math, 
science and engineering in developing solutions 

Overall satisfaction with the design outcome 

0.70 

 

This survey was validated prior to implementation using content and face validation techniques. 
Analytic hierarchy process was used to determine weights for the metrics and the questions in 
each metric. The respondents were faxed a copy of the survey, then a research assistant walked 
them through the questions by telephone and filled in the responses by hand. Next the survey data 
was analyzed for statistical reliability using the Cronbach’s alpha coefficient. The test illustrated 
that quality and overall metric displayed adequate internal consistency and inter-metric 
consistency (see Table 2). As a result, the satisfaction index was obtained by the summing the 
weighted average of each metric. The final satisfaction scores were on a scale of 1-10 with 10 
being the highest. 

Since clients do not always have the background to objectively assess the engineering validity of 
design recommendations, we also obtained third party assessment of design quality on each 
project. A design quality rubric (DQR) was developed to address this issue with an objective to 
quantify the final “quality” of the designed projects. 

To develop this rubric, we first obtained evaluation schemes from mechanical engineering 
capstone course instructors at 30 top ranking schools and several design contests (again, see 
companion paper8 for details). We then extracted 23 metrics that were common across the 
evaluation schemes of the various universities and design contests.  These 23 metrics were 
aggregated into the five metrics shown in Table 3. A seven-point scale was used for each 
question/metric and three anchors provided. A brief rationale was requested from each evaluator 
on each response for the purpose of inter-reviewer comparisons to evaluate consistency among 
the evaluators. 
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TABLE 3: DESIGN QUALITY RUBRIC 

 Metric Definition 

Requirements The design meets the technical criteria and the customer requirements 

B
as

ic
 

Feasibility The design is feasible in its application and fabrication / assembly 

Creativity The design incorporates original and novel ideas, non-intuitive approaches 
or innovative solutions 

A
dv

an
ce

d 

Simplicity 

The design is simple, avoiding any unnecessary sophistication and 
complexity, and hence is: 

Practical 
Reliable 
Serviceable 

Usable 
Ergonomic 
Safe  

 Overall Overall impression of the design solution 

 

Four engineering professionals were hired to evaluate the design projects. Three were licensed 
professional engineers, each with over 10 years of experience in design and manufacturing. The 
fourth had 5 years of mechanical engineering experience and had taken the exam to be 
professionally licensed at the time of the study.  These evaluators were asked to evaluate the 
project outcomes as if they were evaluating actual industry designs while taking into 
consideration the project time and budget constraints. The final reports of each project served as 
the means for the evaluation.  Specific instructions were provided to assess the design projects on 
their outcomes, not on the process. Each evaluator was assigned a number of reports in such a 
way that each report was evaluated twice to provide redundancy in the measurement.  All four 
evaluators looked at two reports in order to determine inter-evaluator consistency.  The quality 
index for each project was calculated by averaging the scores of the individual metrics, then 
averaging across evaluators.  The quality score is on a scale of 1-7. 

The CSQ and DQR measures demonstrate a weak correlation (0.52) implying that the two could 
not be combined. Therefore, to study the design processes, two models were constructed with 
satisfaction and quality as their respective responses. A complete description of the techniques 
used to code the responses, missing values analysis, descriptive question analysis, and other 
issues on these instruments can be obtained from Jain.9  

3c. Data Analysis 

The small sample size and high dimensionality of the data in this study pose significant 
challenges. To address these concerns, we built a principal components artificial neural network 
from the data currently available (so-called happenstance data).  This is a special class of neural 
networks designed for data with high dimensionality. This hybrid architecture helped reduce the 
dimensionality of the data to compensate for the small sample size, and allowed us to predict the 
output in terms of the original process variables.  Two neural network models were constructed 
using the twelve design-related coding pairs from Table 1 as the model inputs.  One neural 
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network used the satisfaction scores as the output variable, while the other used quality rubric 
scores as the output variable. A subset of the sample (11 exemplars) was used to train each 
network and the remaining sample was used to cross-validate the networks.  Several different 
network architectures were constructed and trained using Neurosolutions software, with the MSE 
on the training and cross validation set as the judging criteria.  

If the neural network is reliable (tested and validated), it should imitate the actual design 
processes in a manner consistent with those of our sample.  Then we can use this model to 
generate responses in a virtual design of experiments (VDOE), and draw conclusions about the 
cause and effect relationships within the system.10  We developed a 212-4 fractional factorial 
design for each outcome measure (client satisfaction and quality), with the process variables as 
the input factors. The data for the runs dictated by the design grids was obtained by inputting the 
factor levels into the two artificial neural networks previously developed, and obtaining the 
predicted response levels.   

Due to the deterministic nature of the neural network model, classical notions of experimental 
unit, blocking, replication and randomization were irrelevant in the experimental design. The 
final factorial was a resolution V design with 299 runs. Data transformation, model fitting, 
analysis of variance (ANOVA), model reduction and model adequacy checking were all 
performed in Design Expert software to obtain the response curves for various factors and factor 
interactions. Response was predicted under various process settings within the range of the data 
utilized to construct the model. Results of the analysis are reported in the next section. 

4. Modeling Results 

Table 4 reports the mean and standard deviations of the process and outcomes data used in the 
modeling. The process data are aggregate hours for each project, reported as a percentage of total 
design hours.  A correlation analysis of the 12 variables found that only 2 pairs of variables out 
of a possible 72 were significantly correlated at 1 % significance level. 
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TABLE 4: SUMMARY STATISTICS 

 Mean 
(Hrs) 

Standard 
Deviation 

Process Variables 
C/PD 13.14 9.28 
S/PD 2.16 3.27 
D/PD 8.68 6.10 
C/IG 4.41 2.45 
S/IG 2.83 1.90 
D/IG 2.78 2.87 
C/EA 2.94 3.82 
S/EA 0.80 0.75 
D/EA 24.44 16.72 
C/DR 1.39 2.55 
S/DR 3.54 3.48 
D/DR 32.93 16.90 

Outcome Variables 

CSQ 8.14 1.42 
DQR 4.42 1.06 

 

Table 5 presents the architecture summary of the two neural network models constructed. The 
principal components network reduced the original 12 variables to six independent components 
explaining 99 % of the variation in the data. 

TABLE 5: NETWORK ARCHITECTURES 

Parameter 
Satisfaction 

Model 
Quality 
Model 

Number of input Variables 12 12 
Number of Principal Components 6 6 
Number of hidden layer 1 1 
Number of hidden neurons 3 2 
Training set 11 11 
Testing Set / Cross Validation 3 3 
Learning Rate 1.75 1.75 
Momentum 0.7 0.7 
Step Size 0.1 0.1 
Number of iterations 1000 1000 
MSE (Training Set) < 0.01 < 0.01 
MSE (Cross Validation Set) < 0.11 < 0.21 

 

The best performing networks (based on the judging criterion and production data) were the ones 
with a single hidden layer and 3 and 2 hidden neurons respectively for the satisfaction and the 
quality models. From the learning results, it was observed that the network architectures had a 
good “memory” and the trained matrices of weights and bias reflected the hidden functional 
relationship well. Thus the models can serve as a reasonable surrogate to reality.  Finally, 
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because the testing and validation errors (MSE) were small and the R-Sq values low, the models 
developed can be considered reliable for the prediction of the response scores under any 
combination of the process parameters as long as they are within the range investigated.  

Next, Table 6 presents the analysis of variance (ANOVA) results for the satisfaction and quality 
virtual design of experiments (VDOE) models. The insignificant factors (p > 0.05) are not 
included. The large values of the F-ratios and the small p-values suggest that the model includes 
terms significantly affecting the responses.  

TABLE 6: ANOVA RESULTS 

Source Sum of 
Squares df Mean 

Square 
F 

Value Prob > F 

Satisfaction Model 

Model 206.81 25 8.27 36.32 < 0.0001 
C/PD 67.32 1 67.32 295.54 < 0.0001 
S/PD 19.48 1 19.48 85.51 < 0.0001 
C/IG 9.66 1 9.66 42.43 < 0.0001 
S/IG 2.04 1 2.04 8.95 0.0030 
D/IG 6.71 1 6.71 29.48 < 0.0001 
C/EA 4.50 1 4.50 19.74 < 0.0001 
S/EA 6.53 1 6.53 28.69 < 0.0001 
C/DR 21.87 1 21.87 96.01 < 0.0001 
S/DR 3.46 1 3.46 15.20 0.0001 
D/DR 15.78 1 15.78 69.27 < 0.0001 

Quality Model 

Model 209.95 22 9.54 24.06 < 0.0001 
C/PD 3.11 1 3.11 7.84 0.0055 
S/PD 40.97 1 40.97 103.32 < 0.0001 
D/PD 20.52 1 20.52 51.74 < 0.0001 
C/IG 22.86 1 22.86 57.63 < 0.0001 
S/IG 6.78 1 6.78 17.11 < 0.0001 
S/EA 22.72 1 22.72 57.28 < 0.0001 
C/DR 43.47 1 43.47 109.61 < 0.0001 
D/DR 1.78 1 1.78 4.50 0.0348 

 
Within interactions, the individual variables follow the same trend as the primary effects, save 
that some variables insignificant as primary effects appear significant in interactions (D/PD, 
D/EA for the satisfaction model and C/EA and D/EA for the Quality model).  

Next, Table 7 presents an estimate of the relative importance of the significant factors in each 
model. The slopes of each variable versus the response variables were taken from the response 
plots of the ANOVA, then divided by the absolute value of the smallest magnitude slope (D/DR 
for both models).  This calculation yields an estimate of the relative impacts that the independent 
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variables have on the response variables.  Thus, for example, in the satisfaction model, system 
level engineering analysis (S/EA) has an effect that is approximately 21 times stronger than 
D/DR, and in the positive direction. 

TABLE 7: RELATIVE FACTOR SLOPE SCALING 

* Insignificant at p � 0.05 

Relative 
Slope 

Estimates 

Relative 
Slope 

Estimates Factor 
Quality  
Model 

Satisfaction 
Model 

Concept Problem Definition (C/PD) 4.96 8.20 
Concept Idea Generation (C/IG) - 36.50 8.16 
Concept Engineering Analysis (C/EA) * - 4.09 
Concept Design Refinement (C/DR) - 48.97 -11.83 
System Problem Definition (S/PD) 40.46 9.46 
System Idea Generation (S/IG) 31.61 * 
System Engineering Analysis (S/EA) 114.51 21.06 
System Design Refinement (S/DR) * - 4.13 
Detail Problem Definition (D/PD) -14.82 * 
Detail Idea Generation (D/IG) * - 7.71 
Detail Engineering Analysis (D/EA) * - 6.06 
Detail Design Refinement (D/DR) - 1.00 - 1.00 

Table 7 indicates that conceptual and system level problem definition, and system level idea 
generation and engineering analysis have significantly positive impacts on project quality; 
whereas (somewhat counter-intuitively), concept level idea generation and design refinement, 
and detail problem definition and design refinement have significantly negative impacts.  
Concerning client satisfaction, problem definition and idea generation at the concept level, and 
problem definition and engineering analysis at the system level have significant positive impacts, 
whereas engineering analysis at the concept and detailed levels, design refinement at any design 
level, and detailed engineering analysis have significantly negative effects.  

However, these results are only valid over the range of the variable values in our sample.  For 
example, S/EA ranges from zero to 10 hours of activity (per project over the semester) across our 
sample.  Thus, the results do not mean that a team should spend all of their time doing system 
level engineering analysis and no detailed engineering analysis.  Nonetheless, even slight 
evidence that S/EA is two orders of magnitude more important to the design’s end quality as 
D/DR is interesting and provocative. 

5. Discussion  

Table 8 below displays the general trends in the relationships of individual process variables to 
the two outcome measures as determined by the virtual experimental design. The plus and minus 
signs represent positive and negative effects of the independent variable on the response variable 
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respectively.  The left-most symbol of each pair is from the satisfaction model, while right-most 
symbol of each pair is from the quality model. A single plus or single minus indicates a 
significant factor at a 5% significance level, on the same order of magnitude as D/DR.  Double 
plus or double negative indicates at least one order of magnitude greater impact than D/DR as 
reported in Table 7. Blanks denote the insignificant factors.   

TABLE 8: COMBINED RESULTS 

 PD  IG  EA  DR 

C + +  +  – –  –    – – – – 

S + + +  –  + +  + + + +  –   

D  – –  –       –   – 

 

Table 8 shows a fair amount of consistency across the two models even though quality and 
satisfaction scores themselves were weakly correlated. Except for C/IG and S/IG, none of the 
variables change direction.  Some of the results are somewhat counterintuitive.  We will discuss 
them in terms of five trends evident from Table 8. 

First, somewhat surprisingly, idea generation has contrasting effects on client satisfaction and 
design quality in this sample.  Idea generation at the concept level is positive for client 
satisfaction, but negative for quality; whereas idea generation at the system level is negative for 
client satisfaction, but positive for quality.  Idea generation at the detail level has either a 
negative or insignificant effect.  Engineering design texts implore design students to “be 
creative” and to generate “lots of ideas,” offering a multitude of techniques to break through 
mental blocks and come up with that real gem of an idea.  So we were somewhat surprised that 
idea generation was not an unquestioningly good thing to do.  This is possibly explained by the 
trend explained next. 

A second trend is the overwhelmingly positive effect of problem definition activities at the 
concept and system levels.  These activities involve such things as:  understanding the client’s 
needs, gathering additional information about the problem, searching the internet to learn about 
existing technologies, studying a textbook to learn about the behavior of a certain material, and 
so forth.  In other words, problem definition as we coded it included anything where students 
went outside the team to gain a better grasp of the problem space.  Putting this trend together 
with the first, it seems that it may be more productive for students to learn about existing 
technologies, and to learn about existing solutions to similar or analogous problems, than to 
brainstorm ideas.  This interpretation agrees with the findings of recent studies comparing expert 
and novice problem-solvers.  Novice designers simply do not have the repository of knowledge 
to draw from, so it’s especially critical for them build up some knowledge in order to have a true 
appreciation of the possibilities.  Expert designers when working in an unfamiliar domain spend 
a good deal of their design effort gathering information. 

A third trend is that work performed at the system level appears to be very productive.  The 
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variables S/PD, S/IG, and S/EA have the most strongly positive effects in the models.  The 
exceptions are idea generation for client satisfaction, and design refinement.  System level work 
entails planning out the architecture of the systems, deciding upon subsystems and their 
configuration, working out interface issues, and so forth.  Amazingly, students spend the least 
amount of time on these activities (9% of their design time, as opposed to 22% at the concept 
level and 69% at the detailed level).  Also, most design texts have very little to say about system 
level design. 

A contrasting trend is that design refinement activities are not terribly productive.  The teams 
spending more time in design refinement tended to get worse quality and client satisfaction 
compared to those spending less (within the range of our sample, of course).  Much of the time 
coded as DR was CAD work and prototype building, but it also included design changes based 
on new information or analysis.   

A final trend evident from Table 8 is that work at the detailed level is also not terribly productive, 
it seems.  This agrees with the general consensus in the product development literature that the 
early design decisions have high leverage in terms of cost and quality, and severely constrain the 
gains that can be made in later stages of the project.  It seems design teams should be careful not 
to dive into detailed design too quickly. 

These trends must be taken with the caveat that they apply only to the range of our data.  We 
have no projects, for example, that spent zero time in detailed design refinement.  In fact, most 
projects spent dozens of person-hours on design refinement activities at the detailed level.  So a 
negative impact does not necessarily imply that teams should try to eliminate the category.  
Rather, the data indicate a tendency for students to spend too much time here, and so student 
teams would be wise to do more of their work upfront so as to decrease the amount of time 
needed in detailed and/or design refinement modes. 

6. Conclusions 

While this study is far from conclusive (data are limited to a group of mechanical engineering 
students at one institution in the Rocky Mountain West), it does seem to strongly suggest that the 
general engineering problem-solving model advocated in many introductory engineering texts 
should be modified or at least have a modified interpretation.  We feel our data suggest at least 
two significant modifications. 

First, while many acknowledge that understanding the problem is important, we think more is 
needed with an additional emphasis that is not traditionally emphasized.  Since students have 
little experience, they would be well-advised to seek out solutions to similar problems in the past, 
and understand why/how they work in order to ascertain their applicability to the problem at-
hand.  The problem definition activity should extend to, and perhaps partially merge with the 
generating alternatives phase.  Students need tools and appropriate representations to help 
assimilate information and come to a cohesive and deep understanding of the problem, and by 
proxy potential solutions.  They need strategies that are more productive than trial-and-error, 
which seems to be the default strategy when faced with a new problem. 
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The second modification is to recognize that, particularly with complex problems, problem-
solving can occur at different levels of abstraction, and that this is actually something that should 
be done.  The typical engineering problem-solving model seems to imply that one generates 
alternatives, analyzes them, selects the best one, then “iterates” until done.  This would seem to 
suggest a process whereby the young engineer generates a number of conceptual ideas, analyzes 
them, then selects one to detail out.  Our data suggest that such a strategy is not as effective as 
one that includes problem definition, idea generation, and analysis at intermediate levels.  It 
seems more work needs to be done to determine how the general engineering problem-solving 
model applies to complex problems. 
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